Neutron β -Decay

$$\rho(E_e) \approx \rho_s(E_e) \left\{ 1 + \beta a \cos \theta_{e\nu} + P_n \left[\beta A \cos \theta_{e\sigma} + B \cos \theta_{\nu\sigma} \right] + b \frac{m_e}{E_e} \right\}$$

$$a \sim -0.1$$
 $A \sim -0.1$ $B \sim 1$ $b \sim 0$

A and B require precision neutron polarimetry

Goals

- Determine $\lambda = G_A/G_V$ redundantly Measure both a and A (first precision measurement of a) Determine A from e^- and p asymmetries 3σ deviation from value required for CKM unitarity
- Search for Fierz interference term b Sensitive to scalar and tensor couplings Non-zero value suggested by π^+ β -decay results Never measured
- Measure B precisely Sensitive to deviations from V-A theory e.g. Mass of right-hand boson

Measuring V_{ud} with Neutron Decay

$$V_{ud}^2 = \frac{K/\ln 2}{G_E^2 (1 + \Delta_R^V) (1 + 3\lambda^2) f(1 + \delta_R) \tau_n}, \qquad \lambda = G_A'/G_V' \approx -1.265$$

$$1-V^2 = 0.0047 \pm 0.0051$$

= 0.0047 \pm 0.0049 \pm 0.0010 \pm 0.0010 \pm 0.0007
 λ τ_n V_{us} RC

$$\frac{d\lambda}{da} = 3.3 \qquad \qquad \frac{d\lambda}{dA} = 2.6 \qquad \qquad \frac{d\lambda}{dB} = 13.4$$

$$\Delta a = 2.3 \times 10^{-4}$$
 $\Delta A = 3.0 \times 10^{-4}$ $\Delta B = 0.6 \times 10^{-4}$

$$\longrightarrow \Delta V_{\lambda}^2 = 0.0010$$

Measurement of b Coefficient

- Important physics measurement b=0 in standard model $b\neq 0$ for scalar or tensor couplings Never determined from neutron β -decay Results of π^+ β -decay suggest $b\neq 0$
- $\Delta b = 0.001$ (statistics)
- ullet Needed to extract V_{ud} from λ , au_n

Consistency of Existing Measurements of A

$$A = -0.1170 \pm 0.0006 (0.0015)$$
 $\chi^2 = 24.2$ $P = 8 \times 10^{-5}$

$$A = -0.1173 \pm 0.0006 (0.0012)$$
 $\chi^2 = 15.3$ $P = 4 \times 10^{-3}$

PERKEO II

H. Abele, et al. Physics Letters B 407, 212 (1997).

Sources of Systematic Error in Previous Experiments

- 1. Neutron polarization determined in auxiliary experiments
- 2. Detector properties
 Resolution, efficiency, stability, homogeneity
- 3. Background subtraction: singles measurements needed
- 4. Fiducial volume defined by material apertures Energy loss, scattering
- 5. Magnetic field pinch reverses particle trajectories
- 6. Electron back-scattering from detectors

New Techniques to Address Systematic Errors

- 1. In situ, absolute neutron polarization established
- 2. Large-area segmented silicon detectors
- 3. Detect e and p in coincidence
- 4. Segmented detectors image decay volume
- 5. All decays in homogeneous B region No material apertures or grids
- 6. Transient digitize events for reconstruction of backscattering events

Neutron β -Decay with Cold Neutrons at SNS

Neutron β -Decay Spectrometer

- Two 2π detectors
- ullet e backscattering monitored
- $\Delta t \sim 1$ ns
- $\Delta E \leq$ 5 keV

- e-p coincidence
- Beam imaged by detectors
- In situ background measurement
- No material apertures

Magnetic and Electric Fields

- Magnetic field expansion: \vec{p}_e more normal to detector
- Magnetic field gradient reflects backscattered electrons
- Electric field accelerates protons

In Situ Polarization Measurement

- Neutrons polarized by transmission through polarized ³He
- Measure asymmetries as a function of TOF
- Exact relation between neutron polarization and TOF
- *In situ* determination of P_n to < 0.1%

$$P_n = \tanh(-t/\tau)$$

$$AP_n = A \tanh(-t/\tau)$$

Extract A and B from two-parameter fits to decay data

Absolute Neutron Polarimetry at LANSCE

 $\Delta P_n \leq 0.3\%$ S.I. Penttilä, *et al.*

Constructed for $\vec{n} + p \rightarrow d + \gamma$

Straight forward extension of polarimetry method to $\sim 10^{-4}$

Advantages of Silicon Detectors

- Thin dead layer: $\Delta E_e \leq 5$ eV, $\Delta E_p \leq 5$ keV measured
- Almost unity efficiency: small well-understood corrections
- Extremely uniform dead layer: no wires, foils, supports, etc.
- 4π detection of electrons and protons: coincidence
- Imaging: defines fiducial volume without material apertures, provides *in situ* background measurement

Preliminary Detector Design

15 cm Diameter, 2 mm Thick, 127 Channel

Anticipated Statistical Uncertainty at SNS

Parameter	Rate (Hz)	Uncertainty	PDG Uncertainty
b	800	1.1×10^{-4}	
\boldsymbol{a}	800	1.4×10^{-4}	50×10^{-4}
A	160	0.9×10^{-4}	13×10^{-4}
B	160	1.5×10^{-4}	40×10^{-4}

Assume two runs of 1×10^7 s (polarized, unpolarized)

Anticipated Statistical Uncertainty at LANSCE

Parameter Rate (Hz) Uncertainty PDG Uncertainty
$$b$$
 40 5×10^{-4} — a 40 6×10^{-4} 50 $\times 10^{-4}$

Assume two runs of 5×10^6 s

Systematic Errors Analyzed

- Electron backscattering
- Proton backscattering
- Neutron depolarization effects
 - Depolarization in glass window
 - Finite neutron pulse width
 - -1/v n- 3 He cross section dependence
- Magnetic field inhomogeneities
- Proton arrival time

Status

- ³He polarizer exists
 In situ polarimetry technique demonstrated
- Detector technology proven
 Deadlayer measured
 Timing resolution measured
 10 cm diameter, 2 mm thick detector under development
- Preliminary spectrometer design
 Magnet design and cost study complete
 HV electrode structure designed by UTenn/ORNL
- ADC/DSP design and cost study in progress
 100 MHz 12 bit prototype tested by ORNL
- LANSCE FP12 under construction Neutron guide in place Shielding being installed Flux measured

Preliminary Cost Estimate

		Cost	
WBS	Task	a, b	A, B
1	Beam Line Modifications	\$160 k	\$160k
2	Spectrometer	\$1658 k	
3	Detectors	\$170k	
4	Detector Electronics	\$717k	
5	Polarizer		\$111k
6	Spin Flipper		\$45k
7	Beam Monitors	\$15k	
8	Transverse Field		\$192k

Total Capital \$3.2M (DOE, NSF, and Institutional)
Includes contingency and overhead

Proposed Schedule

Milestone	Date	
Final Proposal	Jun 2003	
Begin Construction	Jan 2005	
Commissioning (LANSCE)	Jan 2007	
Commissioning (SNS)	Jan 2009	

Physics Results before SNS

• Tested apparatus when SNS turns on

Detector Requirements

- Detect electrons $E_e \le 800 \text{ keV}$ 2 mm thick
- Detect protons $E_p \sim 30 \text{ keV}$ Entrance window $\sim 100 \text{ nm}$
- Determine electron energy $\Delta E \sim \text{ few keV}$
- Resolve electron timing $\Delta t \sim 1 \text{ ns}$ Cooled detector and FET, $\sim 1 \text{ kV/mm}$ bias
- High efficiency, hermetic
 15 cm wafer

Test Detectors

• Ion implanted detectors: few cm 2 , 300 μ m thick Entrance window studies

• Surface barrier detectors: 1 cm², 2 mm thick Timing studies

Prototype Detector

56 nm dead layer ($< 20 \mu g/cm^2$)

Dead Layer Measurements

Normal Silicon Detector

200 nm Dead Layer $E_{\rm loss}=$ 14 keV for $E_p=$ 30 keV

Thin Dead Layer Silicon Detector

56 nm Dead Layer
$$E_{\rm loss} =$$
 5 keV for $E_p =$ 30 keV

Detector Properties Checklist

- 2 mm thick
 2 mm thick wafers in 10 cm diameter
 15 cm diameter?
- < 100 nm entrance window< 100 nm measuredMetal?
- $\Delta E \sim \text{ few keV}$ OK
- ullet $\Delta t \sim 1 \, \, \mathrm{ns}$ OK
- 1 kV/mm bias1 kV (total) bias available 2 kV?